Lesson 8.5 Notes (Using the Distributive Property)

Use the Distributive Property to Factor – You can work backward to express a polynomial as the product of a monomial factor and a polynomial factor.

Factoring by Grouping – terms are put into groups and then factored (used to factor polynomials with 4 or more terms)

Multiplying	Factoring	
3(a+b) = 3a + 3b	3a + 3b = 3(a + b)	
x(y-z) = xy - xz	xy - xz = x(y - z)	
6y(2x + 1) = 6y(2x) + 6y(1) = 12xy + 6y	12xy + 6y = 6y(2x) + 6y(1) $= 6y(2x + 1)$	

Example 1: Factor $12mp + 80m^2$.

Find the GCF of 12mp and $80m^2$.

Write each term as the product of the GCF and its remaining factors.

$$12mp + 80m2 = 4m(3p) + 4m(20m)$$
$$= 4m(3p + 20m)$$

Example 2: Factor 6ax + 3ay + 2bx + byby grouping.

$$6ax + 3ay + 2bx + by$$

$$= (6ax + 3ay) + (2bx + by)$$

$$= 3a(2x + y) + b(2x + y)$$

$$= (3a + b)(2x + y)$$

Exercises:

Factor each polynomial.

1.
$$24x + 48v$$

2.
$$30mp^2 + m^2p - 6p$$

3.
$$q^4 - 18q^3 + 22q$$

4.
$$14t^3 - 42t^5 - 49t^4$$

5.
$$55p^2 - 11p^4 + 44p^5$$

$$11p^2(5-p^2+4p^3)$$

6.
$$14y^3 - 28y^2 + y$$

$$7. x^2 + 2x + x + 2$$
 $\times (x+1) + 2(x+1)$

$$(x+1)(x+2)$$

7.
$$x^2 + 2x + x + 2$$
 $\times (x+1) + 2(x+1)$ 8. $6y^2 - 4y + 3y - 2$ $3y(2y+1)^{-2}(2y+1)$

$$(2y+1)(3y-2)$$

9.
$$4m^2 + 4mp + 3mp + 3p^2 + 3p(m^2)$$

10.
$$12ax + 3xz + 4ay + yz + 4a(3x + 4)$$

10.
$$12ax + 3xz + 4ay + yz + 4a(3x+4)$$

 $+ 2(3x+4)$
 $+ 2(3x+4)$

Solve Equations by Factoring The Zero Product Property, along with factoring, can be used to solve equations.

Zero Product Property

For any real numbers a and b, if ab = 0, then either a = 0, b = 0, or both a and b equal 0.

Example: Solve $9x^2 + x = 0$. Then check the solutions.

Write the equation so that it is of the form ab = 0.

$$9x^2 + x = 0$$

Original equation

$$x(9x+1)=0$$

Factor the GCF of $9x^2 + x$, which is x.

$$x = 0 \text{ or } 9x + 1 = 0$$

Zero Product Property

$$x = 0$$
 $x = -\frac{1}{9}$ Solve each equation.

The solution set is $\left\{0, -\frac{1}{9}\right\}$.

Exercises:

Solve each equation. Check your solutions.

13.
$$x(x+3) = 0$$
 (\bigcirc – 3)

14.
$$3m(m-4) = 0$$
 (6, 4)

13.
$$x(x+3) = 0$$
 (0, -3) 14. $3m(m-4) = 0$ (0, 4) 15. $(r-3)(r+2) = 0$ (-2, 3)

16.
$$3x(2x-1)=0$$
 (0, $\sqrt{2}$) **17.** $(4m+8)(m-3)=0$ $\{-2, 3\}$ **18.** $5t^2=25t$ $\{0, 5\}$

17.
$$(4m+8)(m-3)=0$$
 {-2, 3}

18.
$$5t^2 = 25t$$
 { 0, 5 } $5t^2 - 25t = 0$

19.
$$12x^2 = -6x \left\{ -\frac{1}{2}, 6 \right\}$$
 $12x^2 + 6x = 0$
 $6x(2x + 1) = 0$

20.
$$(4a+3)(8a+7)=0$$
 $\{-\frac{7}{8}, -\frac{3}{4}\}$ 21. $8y=12y^2$ $\{0, \frac{3}{3}\}$ $|2y^2-8y=0|$ $|(3y-2)=0|$

Lesson 8.6 Notes (Solving $x^2 + bx + c = 0$)

Factor $x^2 + bx + c$

- Find two integers, m and p, whose sum is equal to b and whose product is equal to c.
- When c is positive, its factors have the same signs.
 - o If b is positive, the factors are positive. If b is negative, the factors are negative.
- When c is negative, its factors have opposite signs.
 - The factor with the greater absolute value has the same sign as b.

Factoring
$$x^2 + bx + c$$

$$x^{2} + bx + c = (x + m)(x + p)$$
, where $m + p = b$ and $mp = c$

Example 1: Factor $x^2 + 7x + 10$.

In this trinomial, b = 7 and c = 10.

Factors of 10	Sum of Factors
1, 10	11
2, 5	7

Since
$$2 + 5 = 7$$
 and $2 \cdot 5 = 10$, let $m = 2$ and $p = 5$.

$$x^2 + 7x + 10 = (x + 5)(x + 2)$$

Example 2: Factor $x^2 + 6x - 16$.

In this trinomial, b = 6 and c = -16. This means m + p is positive and mp is negative. Make a list of the factors of -16, where one factor of each pair is positive.

Factors of -16	Sum of Factors	
1, –16	–15	
– 1, 16	15	
2, –8	-6	
-2, 8	6	

Therefore, m = -2 and p = 8.

$$x^2 + 6x - 16 = (x - 2)(x + 8)$$

Exercises:

Factor each polynomial.

1.
$$x^2 + 4x + 3$$

$$(x+3)(x+1)$$

2.
$$m^2 + 12m + 32$$

$$2. m^2 + 12m + 32$$

 $(m+4)(m+8)$

3.
$$r^2 - 3r + 2$$

4.
$$x^2 - x - 6$$

5.
$$x^2 - 4x - 21$$

$$(x-7)(x+3)$$

6.
$$x^2 - 22x + 121$$

$$(x-11)(x-11)$$

Factor each polynomial.

7.
$$t^2 - 4t - 12$$

($t + 2$) ($t - 6$)

8.
$$p^2 - 16p + 64$$

9.9-
$$10x+x^2$$
 $x^2-10x+9$ $(9-x)(1-x)$ $(x-9)(x-1)$

10.
$$x^2 + 6x + 5$$

11.
$$a^2 + 8a - 9$$
 (a-1)(a+9)

12.
$$y^2 - 7y - 8$$

Quadratic Equation – can be written in the standard form $ax^2 + bx + c = 0$

Factoring and the Zero Product Property can be used to solve many equations of the form $x^2 + bx + c = 0$.

Example: Solve $x^2 + 6x = 7$. Check your solutions.

$$x^2 + 6x = 7$$

Original equation

$$x^2 + 6x - 7 = 0$$

Rewrite equation so that one side equals 0.

$$(x-1)(x+7)=0$$

Factor.

$$x - 1 = 0$$
 or $x + 7 = 0$

Zero Product Property

$$x = 1$$
 $x = -7$

Solve each equation.

The solution set is $\{1, -7\}$.

Exercises:

Solve each equation. Check the solutions.

13.
$$x^2 - 4x + 3 = 0$$
 \(\frac{2}{3}\)

$$/14. y^2 - 5y + 4 = 0$$
 $\{1, 4\}$
 $(y-4)(y-1)=0$

13.
$$x^2 - 4x + 3 = 0$$
 $\{ 1, 3 \}$ $\{ 14. y^2 - 5y + 4 = 0 \} \{ 1, 4 \}$ 15. $m^2 + 10m + 9 = 0 \} \{ -1, -9 \} \{ (x-3)(x-1) = 0 \} \{ (y-4)(y-1) = 0 \} \{ (m+9)(m+1) = 0 \}$

Name		
Ivallic		

Period

Solve each equation. Check the solutions.

16.
$$x^2 = x + 2$$
 $\{-1, 2\}$
 $x^2 - x - 2 = 0$
 $(x - 2)(x + 1) = 0$

17.
$$x^2 - 4x = 5$$
 $\{-1, 5\}$
 $x^2 - 4x - 5 = 0$
 $(x - 5)(x + 1) = 0$

16.
$$x^2 = x + 2$$
 $\{-1, 2\}$ 17. $x^2 - 4x = 5$ $\{-1, 5\}$ 18. $x^2 - 12x + 36 = 0$ $\{-1, 2\}$ $\{-$

19.
$$t^2 - 8 = -7t$$
 $\{ -8, 1 \}$
 $t^2 + 7t - 8 = 0$
 $(t+8)(t-1) = 0$

19.
$$t^2 - 8 = -7t$$
 $\{ -8, 1 \}$ $(20. p^2 = 9p - 14)$ $\{ 2, 7 \}$ $t^2 + 7t - 8 = 0$ $(20. p^2 = 9p - 14)$ $\{ 2, 7 \}$ $\{$

21.
$$-9 - 8x + x^2 = 0$$
 $\{-1, 9\}$
 $x^2 - 8x - 9 = 0$
 $(x-9)(x+1) = 0$

Real-world Applications:

The formula $h = vt - 16t^2$ gives the height h of a rocket after t seconds when the initial velocity v is given in feet per second. Use the formula $h = vt - 16t^2$ to solve each problem.

22. A punter can kick a football with an initial velocity of 48 feet per second. How many seconds will it take for the ball to first reach a height of 32 feet?

23. If a rocket is launched with an initial velocity of 1600 feet per second, when will the rocket be 14,400 feet high?

Lesson 8.7 Notes (Solving $ax^2 + bx + c = 0$)

Factor $ax^2 + bx + c$

- Find two integers m and p whose product is equal to ac and whose sum is equal to b.
- If there are no integers that satisfy these requirements, the polynomial is called a **prime polynomial**.

Example 1: Factor $2x^2 + 15x + 18$.

In this example, a = 2, b = 15, and c = 18. You need to find two numbers that have a sum of 15 and a product of $2 \cdot 18$ or 36. Make a list of the factors of 36 and look for the pair of factors with a sum of 15.

Factors of 36	Sum of Factors
1, 36	37
2, 18	20
3, 12	15

Use the pattern $ax^2 + mx + px + c$, with a = 2, m = 3, p = 12, and c = 18.

$$2x^{2} + 15x + 18 = 2x^{2} + 3x + 12x + 18$$

$$= (2x^{2} + 3x) + (12x + 18)$$

$$= x(2x + 3) + 6(2x + 3)$$

$$= (x + 6)(2x + 3)$$

Example 2: Factor $3x^2 - 3x - 18$.

Note that the GCF of the terms $3x^2$, 3x, and 18 is 3. First factor out this GCF. $3x^2 - 3x - 18 = 3(x^2 - x - 6)$. Now factor $x^2 - x - 6$. Since a = 1, find the two factors of -6 with a sum of -1.

Factors of -6	Sum of Factors
1, –6	- 5
-1, 6	5
-2, 3	1
2, -3	-1

Now use the pattern (x + m)(x + p) with m = 2 and p = -3.

$$x^2 - x - 6 = (x + 2)(x - 3)$$

The complete factorization is

$$3x^2 - 3x - 18 = 3(x+2)(x-3)$$

Exercises:

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write prime.

1.
$$2x^2 - 3x - 2$$

2.
$$3m^2 - 8m - 3$$

3.
$$16r^2 - 8r + 1$$

$$(4r-1)(4r-1)$$

$$(2x+1)(x-2)$$

4.
$$6x^2 + 5x - 6$$

$$(2x+3)(3x-2)$$

5.
$$3x^2 + 2x - 8$$

$$(3x-4)(x+2)$$

6.
$$18x^2 - 27x - 5$$

$$(3x-5)(6x+1)$$

Period

7.
$$3y^2 - 6y - 24$$

$$3(y^2-2y-8)$$

 $3(y+2)(y-4)$

8.
$$4x^2 + 26x - 48$$

$$2(2x^2+13x-24)$$

 $2(x+8)(2x-3)$

9.
$$8m^2 - 44m + 48$$

$$4(2m^2-11m+12)$$

 $4(2m-3)(m-4)$

10.
$$6x^2 - 7x + 18$$

11.
$$2a^2 - 14a + 18$$

12.
$$18 + 11y + 2y^2$$

Solve Equations by Factoring: Solve each equation.

13.
$$8x^2 + 2x - 3 = 0$$
 $\{\frac{1}{2}, \frac{3}{4}\}$ 14. $3n^2 - 2n - 5 = 0$ $\{-1, \frac{5}{3}\}$ 15. $2d^2 - 13d - 7 = 0$ $\{-\frac{1}{2}, \frac{7}{4}\}$

14.
$$3n^2 - 2n - 5 = 0$$
 $\left\{-\frac{5}{3}\right\}$

15.
$$2d^2 - 13d - 7 = 0$$
 $\left\{ -\frac{1}{2}, 7 \right\}$

16.
$$2k^2 - 40 = -11k^2 \left\{ -\frac{5}{2} \right\}$$

17.
$$2p^2 = -21p - 40 \left\{ -\frac{5}{2}, -8 \right\}$$

17.
$$2p^2 = -21p - 40$$
 $\left\{ -\frac{5}{2}, -8 \right\}$ 18. $-7 - 18x + 9x^2 = 0$ $\left\{ \frac{7}{3}, -\frac{1}{3} \right\}$

Real-world Application:

19. The length of a Charlotte, North Carolina, conservatory garden is 20 yards greater than its width. The area is 300 square yards. What are the dimensions? 30 yd * 10 yd

Lesson 8.8 Notes (Differences of Squares)

Difference of Two Squares – a binomial expression in the form $a^2 - b^2$

Difference of Squares

$$a^2 - b^2 = (a - b)(a + b) = (a + b)(a - b)$$

Example 1: Factor $50a^2 - 72$.

$$50a^2 - 72$$
$$= 2(25a^2 - 36)$$

Find the GCF.

$$= 2[(5a)^2 - 6^2)]$$

$$25a^2 = 5a \cdot 5a$$
 and $36 = 6 \cdot 6$

$$=2(5a+6)(5a-6)$$

$$=2(5a+6)(5a-6)$$
 Factor the difference of squares.

Example 2: Factor $4x^4 + 8x^3 - 4x^2 - 8x$.

$$4x^4 + 8x^3 - 4x^2 - 8x$$

$$=4x(x^3+2x^2-x-2)$$

$$=4x[(x^3+2x^2)-(x+2)]$$

$$=4x[x^2(x+2)-1(x+2)]$$

$$= 4x[(x^2 - 1)(x + 2)]$$

$$=4x(x-1)(x+1)(x+2)$$

Original polynomial

Find the GCF.

Group terms.

Find the GCF.

Factor by grouping.

Factor the difference of squares.

Exercises:

Factor each polynomial.

1.
$$x^2 - 81$$

2.
$$m^2 - 100$$

3.
$$16n^2 - 25$$

4.
$$36x^2 - 100v^2$$

$$4(9x^2-25y^2)$$

 $4(3x+5y)(3x-5y)$

5.
$$49x^2 - 36$$

6.
$$16a^2 - 9b^2$$

7.
$$225b^2 - a^2$$

$$8.72n^2 - 50$$

$$9.-2+2x^2 = 2x^2-L$$

$$2(x^2-1)$$

 $2(x+1)(x-1)$

10.
$$-81 + a^4$$

$$11.6 - 54a^2 = -54a^2 + 6$$

10.
$$-81 + a^4$$

 $a^4 - 81$
 $(a^2 + 9)(a^2 - 9)$
 $(a^2 + 9)(a + 3)(a - 3)$
 $(a^2 + 9)(a + 3)(a - 3)$

12.
$$8y^2 - 200$$

$$8(y^2-25)$$

 $8(y+5)(y-5)$

13.
$$169x^3 - x$$

14.
$$3a^4 - 3a^2$$

15.
$$3x^4 + 6x^3 - 3x^2 - 6x$$

$$3 \times (x^{3} + 2x^{2} - x - 2)$$

$$3 \times (x^{2}(x+2) - 1(x+2))$$

$$3 \times (x^{2} - 1)(x+2)$$

$$3 \times (x+1)(x-1)(x+2)$$

Solve Equations by Factoring: Solve $x^2 - \frac{1}{25} = 0$.

$$x^{2} - \frac{1}{25} = 0$$

$$x^{2} - \left(\frac{1}{5}\right)^{2} = 0$$

$$\left(x + \frac{1}{5}\right)\left(x - \frac{1}{5}\right) = 0$$

$$x + \frac{1}{5} = 0 \text{ or } x - \frac{1}{5} = 0$$

$$x = -\frac{1}{5} \text{ or } x = \frac{1}{5}$$

Original equation

$$x^2 = x \cdot x$$
 and $\frac{1}{25} = \left(\frac{1}{5}\right) \left(\frac{1}{5}\right)$

Factor the difference of squares.

Zero Product Property

Solve each equation.

The solution set is $\left\{-\frac{1}{5}, \frac{1}{5}\right\}$.

Exercises:

Solve each equation by factoring. Check the solutions.

16.
$$81x^2 = 49$$

 $81x^2 - 49 = 6$
 $(9x+7)(9x-7) = 0$

$$19.\frac{1}{4}x^2 = 25 \quad \begin{cases} 16 & -10 \end{cases}$$

17.
$$36n^2 = 1$$

$$36n^2-1=0$$

 $(6n+1)(6n-1)=0$
 $\left[\frac{2}{6},\frac{1}{6},\frac{2}{6}\right]$

20.
$$36 = \frac{1}{25}x^2$$
 $\{-30, 30\}$

18.
$$25d^2 - 100 = 0$$

$$25(a^{2}-4)=0$$

$$25(a+2)(a-2)=0$$

$$\left[\frac{2}{2}-2,2\right]$$

21.
$$\frac{49}{100} - x^2 = 0$$
 $\left\{ -\frac{7}{10}, \frac{7}{10} \right\}$

22.
$$16y^3 = 25y$$
 $\begin{cases} 20, -\frac{5}{4}, \frac{5}{4} \end{cases}$

23.
$$\frac{1}{64}x^2 = 49$$
 $\frac{3}{2} - 56$, 56

23.
$$\frac{1}{64}x^2 = 49$$
 $\{-56, 56\}$ 24. $4a^3 - 64a = 0$ $\{0, -4, 4\}$

Lesson 8.9 Notes (Perfect Squares)

<u>Perfect Square Trinomial</u> – a trinomial of the form $a^2 + 2ab + b^2$ or $a^2 - 2ab + b^2$

Symbols $a^2 + 2ab + b^2 = (a + b)(a + b) = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)(a - b) = (a - b)^2$ Examples $x^2 + 8x + 16 = (x + 4)(x + 4) \text{ or } (x + 4)^2$ $x^2 - 6x + 9 = (x - 3)(x - 3) \text{ or } (x - 3)^2$

Example 1: Determine whether $16n^2 - 24n + 9$ is a perfect square trinomial. If so, factor it.

Since $16n^2 = (4n)(4n)$, it is a perfect square.

Since $9 = 3 \cdot 3$, the last term is a perfect square.

The middle term is equal to 2(4n)(3).

 $16n^2 - 24n + 9$ is a perfect square trinomial.

$$16n^{2} - 24n + 9 = (4n)^{2} - 2(4n)(3) + 3^{2}$$
$$= (4n - 3)^{2}$$

Exercises:

Determine whether each trinomial is a perfect square trinomial. Write yes or no. If so, factor it.

1.
$$x^2 - 16x + 64$$

2.
$$m^2 + 10m + 25$$

3.
$$p^2 + 8p + 64$$

Selecting the Correct Factoring Method:

ConceptSummary Factoring Methods		
	Steps	Number of Terms
Step 1	Factor out the GCF.	any
Step 2	Check for a difference of squares or a perfect square trinomial.	2 or 3
Step 3	Apply the factoring patterns for $x^2 + bx + c$ or $ax^2 + bx + c$ (general trinomials), or factor by grouping.	3 or 4

Example 2: Factor $16x^2 - 32x + 15$.

Since 15 is not a perfect square, use a different factoring pattern.

$$16x^2 - 32x + 15$$
 Original trinomial $= 16x^2 + mx + px + 15$ Write the pattern. $= 16x^2 - 12x - 20x + 15$ $m = -12$ and $p = -20$ $= (16x^2 - 12x) - (20x - 15)$ Group terms. $= 4x(4x - 3) - 5(4x - 3)$ Find the GCF. $= (4x - 5)(4x - 3)$ Factor by grouping.