Lesson 7.3 Notes (Rational Exponents)

Objectives:

- Evaluate and rewrite expressions involving rational exponents.
- Solve equations involving expressions with rational exponents.

Rational Exponents:

- Exponential Form number or variable raised to a power $(x^{1/n})$
- Radical Form number or variable under a radical symbol $(\sqrt[n]{x})$

Square Root	$b^{\frac{1}{2}} = \sqrt{b}$
Cube Root	$b^{\frac{1}{3}} = \sqrt[3]{b}$
nth Root	$b^{\frac{1}{n}} = \sqrt[n]{b}$

Square Roots: Write each expression in radical form, or write each radical in exponential form.

$$1.14^{\frac{1}{2}}$$
 $\sqrt{14}$

2.
$$5x^{\frac{1}{2}}$$
 $5\sqrt{17}$

$$3.\sqrt{17}$$
 1712

$$4.\sqrt{12n} \qquad (12n)^{1/2} = 2(3n)^{1/2}$$

5.
$$19ab^{\frac{1}{2}}$$
 19a Jb

5.
$$19ab^{\frac{1}{2}}$$
 $|9a\sqrt{b}|$ 6. $\sqrt{18b}$ $(|8b)^{1/2}$ $= 3(2b)^{1/2}$

nth Roots: Simplify each expression.

11.
$$125^{\frac{1}{3}}$$

12.
$$256^{\frac{1}{4}}$$

Extension:

$$\mathbf{b}^{\frac{m}{n}} = (\sqrt[n]{b})^m or \sqrt[n]{b^m}$$

The Power of a Power property allows us to extend the definition of $b^{\frac{1}{n}}$ to $b^{\frac{m}{n}}$.

$$b^{\frac{m}{n}} = \left(b^{\frac{1}{n}}\right)^m$$
 Power of a Power $b^{\frac{1}{n}} = \sqrt[n]{b}$

Examples: Simplify each expression.

14.
$$64^{\frac{2}{3}} (64^{\frac{1}{3}})^2$$

= $(4)^2 = 16$

15.
$$36^{\frac{3}{2}} (36^{1/2})^3$$

$$= (6)^3 = 216$$

$$16.27^{\frac{2}{3}} \left(27^{\frac{1}{3}}\right)^{2}$$

$$= \left(3\right)^{2} = \left(9\right)$$

Exponential Equation – an equation in which variables occur as exponents

Use the Power Property of Equality and the other properties of exponents to solve exponential equations.

KeyConcept Power Property of Equality

Words

For any real number b > 0 and $b \ne 1$, $b^x = b^y$ if and only if x = y.

Examples

If $5^x = 5^3$, then x = 3. If $n = \frac{1}{2}$, then $4^n = 4^{\frac{1}{2}}$.

Examples: Solve each equation.

17.
$$2^x = 128$$

$$2^{X} = 2^{7}$$

19.
$$5^x = 125$$
 $5^x = 5^3$

$$\chi = 3$$

18.
$$3^{3x+1} = 81$$

$$3^{3X+1} = 3^4$$

$$3x+1=4$$

$$3x = 3$$

$$X = ($$

20.
$$6^{3x+2} = 216$$

$$3x + 2 = 3$$

 $3x = 1$
 $x = (\frac{1}{3})$

$$X = (\frac{1}{2})^{2}$$