<u>Lesson 5.6 Notes</u> (Graphing Inequalities in Two Variables)

Objectives:

- Graph linear inequalities on the coordinate plane.
- Solve inequalities by graphing.

<u>Graph of a Linear Inequality</u> – the set of points that represent all the possible solutions of that inequality

- An equation defines a **boundary**, which divides the coordinate plane into two **half-planes**.
 - o Closed half-plane -boundary included in solution
 - o Open half-plane -boundary not included in solution

KeyConcept Graphing Linear Inequalities

- Step 1 Graph the boundary. Use a solid line when the inequality contains \leq or \geq . Use a dashed line when the inequality contains < or >.
- Step 2 Use a test point to determine which half-plane should be shaded.
- Step 3 Shade the half-plane that contains the solution.
- Examples: Graph each of the following inequalities.

1.
$$3x - y < 2$$
 $-3x$
 $-3x$
 $-4 < -3x + 2$
 -1
 $y > 3x - 2$

$$\begin{array}{c|c}
2. & x + 5y \le 10 \\
-X & -X \\
\hline
& 5y \le -X + 10 \\
\hline
& 5 & 5
\end{array}$$

$$\begin{array}{c|c}
1 & 2 & 2 & 3 & 4 & 4 & 4 \\
\hline
& 1 & 2 & 3 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 2 & 3 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 3 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 4 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 5 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 5 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 5 & 4 & 4 & 4 & 4 & 4 \\
\hline
& 5 & 4 & 4 & 4$$

- Test (0,0): 0<3 <

- 4. $2y + 3 \le 7$ $2y \le \frac{1}{2}$ $2y \le \frac{1}{2}$ $0 \le 2$

Application

5. A yearbook company promises to give the junior class a picnic if they spend at least \$28,000 on yearbooks and class rings. Each yearbook costs \$35, and each class ring costs \$140. How many yearbooks and class rings must the junior class buy to get their picnic? Write and graph an inequality to represent the possible combinations.

Test (0,0): 35(0) +140(0) ≥ 28000 0 = 28,000

To graph, find intercepts.

$$y - intercept$$
: let $r = 0$
 $35y + 140(0) = 28000$
 $35y = 28,600 \Rightarrow y = 800$
 $y = 28,600 \Rightarrow y = 800$
 $y = 28,600$
 $35(0) + 140r = 28,600$
 $140r = 28,000$
 $r = 260 rings$

