<u>Lesson 5.3 Notes</u> (Solving Multi-Step Inequalities)

Objectives:

- Solve linear inequalities involving more than one operation.
- Solve linear inequalities involving the Distributive Property.

<u>Multi-Step Inequalities</u> – solved by undoing operations in the same way you would solve a multi-step equation

- Exception! Multiply/divide by a <u>negative</u> → <u>reverse direction</u> of inequality
- Examples:
 - 1. Solve each inequality. Then, graph the solution set on a number line.

a.
$$-11y - 13 > 42$$

 $+ \frac{3}{13} + \frac{13}{13}$
 $-\frac{11}{4} > \frac{55}{5}$
 $-\frac{11}{4} > \frac{55}{5}$

b.
$$4(3t-5)+7 \ge 8t+3$$

 $12t-20+7 \ge 8t+3$
 $12t-13 \ge 8t+3$
 $12t \ge 8t+16$
 $12t \ge 16$
 $t \ge 4$

- 2. Define a variable, write an inequality, and solve the problem.
 - a. Write and solve an inequality to find the sales Mrs. Jones needs if she earns a monthly salary of \$2000 plus a 10% commission on her sales. Her goal is to make at least \$4000 per month. What sales does she need to meet her goal?

b. Five minus 6 times a number is more than 4 times the number plus 45.

$$5-600 > 40 + 45$$

 $5 > 1000 + 45$
 $-40 > 1000$
 $-4 > 000$
 $-4 > 000$

Special Cases:

- **Empty Set** (\emptyset) solving results in a statement that is *never true*
 - o the inequality has no solutions
 - Notation: Ø
- All Real Numbers solving results in a statement that is always true
 - o All real numbers are part of the solution set
 - Notation: {x | x is a real number}
- Examples: Solve each inequality.

3.
$$9t-5(t-5) \le 4(t-3)$$

 $9t-5t+25 \le 4t-12$
 $-4t+25 \le 4t-12$
 $-4t$
 $-4t$

No solution => \{\$\psi_3\}

4.
$$6(5z-3) \le 36z$$

 $30z-18 \le 36z$
 $-30z$
 $-18 \le 6z$
 $-3 \le 7$
 $-3 \le 7$
 $-3 \le 7$
 $-3 \le 7$

5.
$$3(4m+6) \le 42 + 6(2m-4)$$

 $12m + 18 \le 42 + 12m - 24$
 $12m + 18 \le 18 + 12m$
 $-12m$
 $18 \le 18 \le 18 \le 18$

12m + 18 \(18 + 12m \)
-12m \\
-12m \\
18 \(\) 18 \(\)
\[\text{Solution:} \quad \(\) \(\) \[\) \[\) \[\) \\
\[\] \[\] \[\] \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \\ \] \[\]