<u>Lesson 5.1 Notes</u> (Solving Inequalities by Addition and Subtraction)

Objectives:

- Solve linear inequalities by using addition.
- Solve linear inequalities by using subtraction.

<u>Inequality</u> – an open sentence that contains <, >, \le , or \ge .

ConceptSummary Phrases for Inequalities			
<	>	S	2
less than fewer than	greater than more than	at most, no more than, less than or equal to	at least, no less than, greater than or equal to

Set-Builder Notation

- Example: $x \ge 20 \rightarrow \{x \mid x \ge 20\}$
 - "The set of all numbers x such that x is greater than or equal to 20"

• Practice: $y < 5 \rightarrow \frac{\text{2yly} < 5\text{}}{\text{}}$

One-Step Inequalities (Addition and Subtraction)

- Basic inequalities involving addition and subtraction can be solved using the same method as equations.
- **Hint**: Put the variable on the *left* side before graphing.

Addition and Subtraction Properties of Inequalities

For any inequality, if the same quantity is added or subtracted to each side, the resulting inequality is true.

If a > b, then a + c > b + c. If a < b, then a + c < b + c. If a > b, then a - c > b - c. If a < b, then a - c < b - c.

• Examples: Solve each inequality. Then, graph the solution set on a number line.

1.
$$t-12 \ge 16$$
 $+12 + 12$
 $[t \ge 28]$

Inequalities with Variables on Each Side

- Similar to equations, your goal is to isolate the variable on one side of the inequality.
- Examples: Solve each inequality. Then, graph the solution set on a number line.

3.
$$3a+6 \le 4a$$

$$6 \le a$$

$$\boxed{a \ge 6}$$

4.
$$5h > 12 + 4h$$

Writing and Solving Inequalities – use key words to convert words into an inequality

- Examples: Define a variable, write an inequality, and solve each problem.
 - 5. The sum of a number and 8 is at most 12.

$$(x+8 \le 12)$$
 $(x+8 \le 12)$ $(x+8 \le 12)$ $(x+8 \le 12)$

6. The sum of a number and 6 is greater than or equal to -4.

$$x + 6 \ge -4$$
 $x + 6 \ge -4$
 $x + 6 \ge -4$
 $x + 6 \ge -4$

7. A number decreased by 4 is less than 14.

8. Felipe needs for the temperature of his gecko's basking spot to be at least 82°F. Currently, the basking spot is 62.5°F. How much warmer does it need to be?

$$62.5 + t \ge 82$$

 $t \ge 19.5\%$