Chapter 4.3 Notes (Writing Equations in Point-Slope Form)

Objectives:

- Write equations of lines in point-slope form.
- Write linear equations in different forms.

Point-Slope Form: $y - y_1 = m(x - x_1)$

• Useful when we know the *slope* and the coordinates of *one point*

Words The linear equation $y - y_1 = m(x - x_1)$ is written in point-slope form, where (x_1, y_1) is a given point on a nonvertical line and m is the slope of the line.

Symbols $y - y_1 = m(x - x_1)$

• Examples: Write an equation in *point-slope* form for the line that passes through each point with the given slope. Then, graph the equation.

1.
$$(3, -2)$$
; $m = \frac{1}{4}$
 $y - (-2) = \frac{1}{4}(x - 3)$
 $y + 2 = \frac{1}{4}(x - 3)$

2.
$$(-2, 1)$$
; $m = -6$
 $(y-1 = -6(x+2))$

Converting to Slope-Intercept Form: y = mx + b

• Examples: Write each equation in slope-intercept form.

3.
$$y+3=\frac{3}{2}(x+1)$$

 $y+3=\frac{3}{2}x+\frac{3}{2}$
 $y=\frac{3}{2}x+\frac{3}{2}-3$
 $y=\frac{3}{2}x-\frac{3}{2}$

4.
$$y+6=-3(x-4)$$

 $y+6=-3x+12$
 $y=-3x+6$

Standard Form: Ax + By = C

A, B, and C are integers (no fractions or decimals)

A and B are not both zero

 $A \ge 0$

Converting to Standard Form: Ax + By = C

• Examples: Write each equation in standard form.

5.
$$y-1=-\frac{2}{3}(x-5)$$

 $3[y-1=-\frac{2}{3}(x-5)]$
 $3y-3=-2(x-5)$
 $3y-3=-2x+10$
 $3y=-2x+13 \implies [2x+3y=13]$

6.
$$y-1=7(x-5)$$

 $y-1=7x-35$
 $y=7x-34$
 $-1(-7x+y=-34)$
 $-7x-y=34$

Geometry Application

- Example: The figure shows square *RSTU*.
 - 7. Write an equation in *point-slope form* for the line containing side \overline{TU} .

Points:
$$(4,2)$$
 and $(7,5)$

Slope = $\frac{5-2}{7-4} = \frac{3}{3} = 1$

8. Write an equation in *standard form* for the same line.

