Chapter 4.2 Notes (Writing Equations in Slope-Intercept Form)

Objectives:

- Write an equation of a line in slope-intercept form given the slope and one point.
- Write an equation of a line in slope-intercept form given two points.

Given the Slope and a Point

- Step 1: Find the **y-intercept**.
 - O Plug your x-coordinate, y-coordinate, and m into y = mx + b. Then, solve for b.
- Step 2: Write the equation in slope-intercept form.
- Example: Write an equation of a line that passes through (2, 1) with a slope of 3.

$$y = m \times + b$$

 $1 = (3)(2) + b$
 $1 = b + b$
 $-5 = b$

$$M = 3$$
 ; $b = -5$

$$y = 3x - 5$$

Given Two Points

3

- Step 1: Find the **slope** of the line containing the given points.
 - Use the slope formula.
- Step 2: Use either point to find the y-intercept.
 - Plug your x-coordinate, y-coordinate, and m into y = mx + b. Then, solve for b.
- Step 3: Write the equation in slope-intercept form.
- Examples: Write an equation of the line that passes through each pair of points.

a)
$$(3, 1)$$
 and $(2, 4)$

b) $(-4, -2)$ and (-3)
 $m = \frac{4-1}{2-3} = -3$
 $m = \frac{-6-(-2)}{-5-(-4)}$
 $m = \frac{6-(-2)}{-5-(-4)}$
 $m = \frac{6-(-2)}{-5-(-4)}$

b)
$$(-4, -2)$$
 and $(-5, -6)$
 $M = \frac{-b - (-2)}{-5 - (-4)} = \frac{-4}{-1} = 4$
 $y = Mx + b$, use $(-4, -2)$
 $-2 = 4(-4) + b$
 $-2 = -16 + b$
 $14 = 6$
 $M = 4$, $b = 14$
 $Y = 4x + 14$

Linear Extrapolation – make predictions about values that are beyond the range of the data

- Example 1: In addition to his weekly salary, Ethan is paid \$16 per delivery. Last week, he made 5 deliveries, and his total pay was \$215.
 - a) Write a linear equation (in slope-intercept form) to find Ethan's total weekly pay T if he makes d deliveries.

Tif he makes d deliveries.
Point:
$$(5, 215) = $1215$$
 for 5 deliveries
Slope: 16
 $215 = 16(5) + 6$
 $7 = 16d + 135$
 $215 = 80 + 6$

b) Predict how much money Ethan will earn in a week if he makes 8 deliveries.

$$P = 16(8) + 135$$

$$= ($263)$$

Example 2: The table shows the number of domestic flights in the U.S from 2004 to F= # of flights (in millions) 2008. Flights

Y = Year a) Write an equation (in slope-intercept form) that could be used to predict the number of flights if it continues to decrease at the

Year	(millions)
2004	9.97
2005	10.04
2006	9.71
2007	9.84
2008	9.37

Slope =
$$\frac{9.37 - 9.97}{2008 - 2004} = \frac{-.6}{4} = -0.15$$

Point:
$$(2008, 9.37)$$

 $9.37 = -0.15(200) + 6$
 $9.37 = -301.2 + 6$
 $510.57 = 6$

b) Estimate the number of domestic flights in 2020.

$$F = -0.15(2020) + 310.57$$

= $[7.57]$ million