Bell Work

A picture frame originally priced at \$14.00 is 40% off.

- a) What is the discounted price?
- b) What is the final price if 10% sales tax is added after the discount?

<u>Lesson 2.8</u> (Literal Equations and Dimensional Analysis)

Objectives:

-Solve equations for given variables.

-Use formulas to solve real-world problems.

Solve for Specific Variables

<u>Literal Equation (Formula)</u> - equation involving several variables

Ex. 1

Solve 4m - 3n = 8 for m.

$$4m - 3n = 8$$

$$4m - 3n + 3n = 8 + 3n$$

$$4m = 8 + 3n$$

$$\frac{4m}{4} = \frac{8 + 3n}{4}$$

$$m = \frac{8}{4} + \frac{3}{4}n$$

$$m = 2 + \frac{3}{4}n$$

Ex. 2

$$3x - 2y = xz + 5$$

$$3x - 2y + 2y = xz + 5 + 2y$$

$$3x - xz = xz - xz + 5 + 2y$$

$$3x - xz = 5 + 2y$$

$$x(3 - z) = 5 + 2y$$

$$\frac{x(3 - z)}{3 - z} = \frac{5 + 2y}{3 - z}$$

$$x = \frac{5 + 2y}{3 - z}$$

Solve 3x - 2y = xz + 5 for x.

When the variable is on both sides:

- 1. Move the variable to one side.
- 2. Isolate the variable using distribution.

Practice

1A.
$$15 = 3n + 6p$$
, for n

1B.
$$\frac{k-2}{5} = 11j$$
, for k

10.
$$28 = t(r+4)$$
, for t

1D.
$$a(q - 8) = 23$$
, for q

2A.
$$d + 5c = 3d - 1$$
, for d

2B.
$$6q - 18 = qr + t$$
, for q

Dimensional (Unit) Analysis -

process of carrying units throughout a computation

Example: A race is 10 km long. If 1 meter = 1.094 yards, find the length of the race in miles. (Hint: 1 mi = 1760 yd)

Notice how the units cancel, leaving the unit to which you are converting.

10 km
$$\times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1.094 \text{ yd}}{1 \text{ m}} \times \frac{1 \text{ mi}}{1760 \text{ yd}} = \frac{10,940 \text{ mi}}{1760}$$

$$\approx 6.2 \text{ mi}$$

A 10K race is approximately 6.2 miles.

Practice: A car travels 100 feet in 2.8 seconds. What is the velocity of the car in miles per hour?

Lesson 2.8 (Page 128-129) #