Bell Work

Evaluate each expression.

1.
$$5 \cdot 4(10-8) + 20$$

2.
$$\frac{2^5-6\cdot 2}{3^3-5\cdot 3-2}$$

Evaluate each expression if a = 4, b = 5, and c = 10.

1.
$$\frac{ac^2-8b}{ab}$$

2.
$$b^3 + ac - b$$

Lesson 1.3 Properties of Numbers

- Objectives:
 - _ Recognize the properties of equality and identity.
 - **_** Recognize the Commutative and Associative Properties.

PROPERTIES OF EQUALITY

KeyConcept Properties of Equality				
Property	Words	Symbols	Examples	
Reflexive Property	Any quantity is equal to itself.	For any number a , $a = a$.	5 = 5 4 + 7 = 4 + 7	
Symmetric Property	If one quantity equals a second quantity, then the second quantity equals the first.	For any numbers a and b , if $a = b$, then $b = a$.	If $8 = 2 + 6$, then $2 + 6 = 8$.	
Transitive Property	If one quantity equals a second quantity and the second quantity equals a third quantity, then the first quantity equals the third quantity.	For any numbers a , b , and c , if $a = b$ and $b = c$, then $a = c$.	If $6 + 9 = 3 + 12$ and $3 + 12 = 15$, the $6 + 9 = 15$.	
Substitution Property	A quantity may be substituted for its equal in any expression.	If $a = b$, then a may be replaced by b in any expression.	If $n = 11$, then $4n = 4 \cdot 11$	

- a. Can you think of a number that can be added to any number to keep that number the same?
- b. Can you think of a number that can be multiplied by any number to keep that number the same?

Addition Properties

 Additive Identity: O(the sum of any number and 0 is equal to that number)

Multiplication Properties

• Multiplicative Identity: 1 (the product of any number and 1 is equal to that number)

KeyConcept Multiplication Properties					
Property	Words	Symbols	Examples		
Multiplicative Identity	For any number a , the product of a and 1 is a .	$a \cdot 1 = a$ $1 \cdot a = a$	14 • 1 = 14 1 • 14 = 14		
Multiplicative Property of Zero	For any number a , the product of a and 0 is 0.	$a \cdot 0 = 0$ $0 \cdot a = 0$	$9 \cdot 0 = 0$ $0 \cdot 9 = 0$		
Multiplicative Inverse	For every number $\frac{a}{b}$, where $a, b \neq 0$, there is exactly one number $\frac{b}{a}$ such that the product of $\frac{a}{b}$ and $\frac{b}{a}$ is 1.	$\frac{a}{b} \cdot \frac{b}{a} = 1$ $\frac{b}{a} \cdot \frac{a}{b} = 1$	$\frac{4}{5} \cdot \frac{5}{4} = \frac{20}{20} \text{ or } 1$ $\frac{5}{4} \cdot \frac{4}{5} = \frac{20}{20} \text{ or } 1$		

Ex 1. Evaluate Using Properties

Evaluate
$$\frac{1}{4}(12-8)+3(15\div 5-2)$$
.

Name the property used in each step.

$$\frac{1}{4}(12-8) + 3(15 \div 5 - 2) = \frac{1}{4}(4) + 3(15 \div 5 - 2)$$
Substitution: $12 - 8 = 4$

$$= \frac{1}{4}(4) + 3(3 - 2)$$
Substitution: $15 \div 5 = 3$

$$= \frac{1}{4}(4) + 3(1)$$
Substitution: $3 - 2 = 1$

$$= \frac{1}{4}(4) + 3$$
Multiplicative Identity: 3(1) = 3

$$= 1 + 3$$

Multiplicative Inverse: $\frac{1}{4}(4) = 1$

= 4 Substitution: 1 + 3 = 4

Answer: 4

Practice

GuidedPractice

Name the property used in each step.

1A.
$$2 \cdot 3 + (4 \cdot 2 - 8)$$
 1B. $7 \cdot \frac{1}{7} + 6(15 \div 3 - 5)$
 $= 2 \cdot 3 + (8 - 8)$
 ? Substitution

 $= 2 \cdot 3 + (0)$
 ? Additive Inverse

 $= 6 + 0$
 ? Substitution

 $= 6$
 ? Additive Identity

$$= 7 \cdot \frac{1}{7} + 6(5 - 5)$$

$$= 7 \cdot \frac{1}{7} + 6(0)$$

$$= 1 + 6(0)$$

$$?$$

1B. Substitution; Additive Inverse; Multiplicative Inverse; **Multiplicative Property of Zero; Additive Identity**

1B.
$$7 \cdot \frac{1}{7} + 6(15 \div 3 - 5)$$

= $7 \cdot \frac{1}{7} + 6(5 - 5)$?
= $7 \cdot \frac{1}{7} + 6(0)$?
= $1 + 6(0)$?
= $1 + 0$?
= $1 + 0$?

Evaluate
$$\frac{1}{3}(10-7) + 4(18 \div 9 - 1)$$
.

Commutative Property

 $\label{lem:commutative Property - the orderin which you add or multiply numbers does not change their sum or product$

	Addition	Multiplication
Symbols	a + b = b + a	a • b = b • a
Examples	4 + 8 = 8 + 4	7 • 11 = 11 • 7

NOTE — This property does NOT work for subtraction and division.

Associative Property

Associative Property — the way you group 3 or more numbers when adding or multiplying does not change their sum or product

	Addition	Multiplication
Symbols	(a + b) + c = a + (b + c)	(ab)c = a(bc)
Examples	(3 + 5) + 7 = 3 + (5 + 7)	$(2 \cdot 6) \cdot 9 = 2 \cdot (6 \cdot 9)$

NOTE — This property does NOT work for subtraction and division.

Ex 2. Evaluate Using Properties

Evaluate 2 • 8 • 5 • 7 using properties of numbers.

Name the property used in each step.

You can rearrange and group the factors to make mental calculations easier.

 $2 \bullet 8 \bullet 5 \bullet 7 = 2 \bullet 5 \bullet 8 \bullet 7$ Commutative (x) = $(2 \bullet 5) \bullet (8 \bullet 7)$ Associative (x) = $10 \bullet 56$ Substitution = 560 Substitution

Answer: 560

Practice

Example 3 Use Multiplication Properties

Evaluate $5 \cdot 7 \cdot 4 \cdot 2$ using the properties of numbers. Name the property used in each step.

$$5 \cdot 7 \cdot 4 \cdot 2 = 5 \cdot 2 \cdot 7 \cdot 4$$
 Commutative (x)
= $(5 \cdot 2) \cdot (7 \cdot 4)$ Associative (x)
= $10 \cdot 28$ Substitution
= 280 Substitution