Lesson 1.2 Order of Operations

- Objectives:
 - **—** Evaluate numerical expressions by using the order of operations.
 - $\underline{\ }$ $\underline{\ }$ Evaluate algebraic expressions by using the order of operations.

Evaluate Expressions

Ex 1. Evaluate 26.

 $2^6 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ Use 2 as a factor

6 times.

= 64 Multiply.

Ex 2. Evaluate 4⁴.

 $4^4 = 4 \bullet 4 \bullet 4 \bullet 4$ Use 4 as a factor

4 times.

= 256 Multiply.

▶ PEMDAS

- ▶ P Parentheses (Evaluate expressions inside grouping symbols)
- ▶ E Exponents (Evaluate all powers)
- ► M Multiplication (Multiply/divide from left to right)
- D Division
- ► A Addition (Add/subtract from left to right)
- ▶ S Subtraction

Ex 1. Evaluate $48 \div 2^3 \bullet 3 + 5$.

$$48 \div 2^3 \bullet 3 + 5 = 48 \div 8 \bullet 3 + 5$$
 Evaluate powers.
= $6 \bullet 3 + 5$ Divide 48 by 8.
= $18 + 5$ Multiply 6 and 3.
= 23 Add 18 and 5.

Ex 2. Evaluate $4[12 \div (6-2)]^2$.

 $4[12 \div (6-2)]^2 = 4(12 \div 4)^2$ Evaluate innermost expression first.

= 4(3)² Evaluate expression in grouping symbol.

= 4(9) Evaluate power.

= 36 Multiply.

Bell Work!

- 1) Write a verbal expression for $2c^2 + d$.
- 2) Write an algebraic expression for:
 - a) Four times the square of n
 - b) 5 less than x
- 3) Pencils sell for 0.79 each and markers sell for 0.89 each. Write an expression for the cost of p pencils and m markers.

Evaluate $[(9^2 - 9) \div 12]5$. Evaluate $(8 - 3) \bullet 3(3 + 2)$.

Ex 2. Evaluate
$$\frac{2^5 - 6 \cdot 2}{3^3 - 5 \cdot 3 - 2}$$
.

$$\frac{2^5 - 6 \cdot 2}{3^3 - 5 \cdot 3 - 2} \text{ means } \left(2^5 - 6 \cdot 2\right) \div \left(3^3 - 5 \cdot 3 - 2\right).$$

$$\frac{2^5 - 6 \cdot 2}{3^3 - 5 \cdot 3 - 2} = \frac{32 - 6 \cdot 2}{3^3 - 5 \cdot 3 - 2}$$
 Evaluate the power in the numerator.
$$= \frac{32 - 12}{3^3 - 5 \cdot 3 - 2}$$
 Multiply 6 and 2 in the numerator.

 $= \frac{32 - 12}{3^3 - 5 \cdot 3 - 2}$ Multiply 6 and 2 in the numerator.

$$=\frac{20}{3^3-5\cdot 3-2}$$

 $= \frac{20}{3^3 - 5 \cdot 3 - 2}$ Subtract 32 and 12 in the numerator.

$$=\frac{20}{27-5 \cdot 3-2}$$

 $= \frac{20}{27 - 5 \cdot 3 - 2}$ Evaluate the power in the denominator.

$$=\frac{20}{27-15-2}$$

Multiply 5 and 3 in the denominator.

$$=\frac{20}{10}$$
 or 2

Subtract from left to right in the denominator.

$$2(4 + 7) \bullet (9 - 5)$$

$$3[5-2 \cdot 2]^2$$

$$\frac{3^3 - 4 \cdot 3}{2^5 - 5 \cdot 3 - 2}$$

Bell Work

Evaluate each expression.

- 1. 20 6 3
- 2. 2(15 + 3) 11 2
- 3. $40 \div 5 + 5 \cdot 2(13 7)$
- 4. $15 [10 + (3-2)^2]$
- $5. \frac{(4+5)^2}{3(7-4)}$

Evaluate Algebraic Expressions

Ex. 1 Evaluate $2(x^2 - y) + z^2$ if x = 4, y = 3, and z = 2.

$$2(x^{2} - y) + z^{2} = 2(4^{2} - 3) + 2^{2}$$
 Replace x with 4, y with 3 and z with 2.
 $= 2(16 - 3) + 2^{2}$ Evaluate 4^{2} .
 $= 2(13) + 2^{2}$ Subtract 3 from 16.
 $= 2(13) + 4$ Evaluate 2^{2} .
 $= 26 + 4$ Multiply 2 and 13.
 $= 30$ Add.

Evaluate Algebraic Expressions

Evaluate
$$x^3 - y^2 + z$$
, if $x = 3$, $y = 2$, and $z = 5$.

Evaluate
$$3x^2 + (2y + z^3)$$
 if $x = 4$, $y = 5$, $z = 3$.

$$a^{2}(3b + 5) \div c$$
 if $a = 2, b = 6, c = 4$

Real-World Application

Ex 1. Each side of the Great Pyramid at Giza, Egypt, is a triangle. The base of each triangle once measured 230 meters. The height of each triangle once measured 187 meters. The area of a triangle is one-half the product of the base b and its height h.

A. Write an expression that represents the area of one side of the Great Pyramid.

B. Find the area of one side of the Great Pyramid.

A. Write an expression that represents the area of one side of the Great Pyramid.

Answer:
$$\frac{1}{2}bh$$

B. Find the area of one side of the Great Pyramid.

Evaluate
$$\frac{1}{2}bh$$
 for $b = 230$ and $h = 187$.

$$\frac{1}{2}bh = \frac{1}{2}(230 \cdot 187)$$
 Replace *b* with 230 and *h* with 187.

$$= \frac{1}{2}(43,010)$$
 Multiply 230 by 187.

$$= 21,505$$
 Multiply $\frac{1}{2}$ by 43,010.

Answer: The area of one side of the Great Pyramid is 21,505 m².

Real-World Application

Find the area of a triangle with a base of 123 feet and a height of 62 feet.

3813 ft²